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Abstract
Numerical simulations have been used to investigate the thermal response to a
gradual temperature rise in surface-free bulks of metallic elements with different
crystalline structure. The increase in thermal vibration amplitudes determines
the appearance of atoms with defective coordination. Their number increases
with temperature at a rate depending on the thermal properties of the crystalline
lattice. Due to the absence of free surfaces and other structural defects, melting
takes place at the first limit of superheating. Numerical findings point out that,
at such a temperature, elements with the same crystallographic structure display
roughly the same content of atoms with defective coordination. The fraction
of defectively coordinated atoms at the homogeneous melting point is then a
quantity characteristic of the crystalline lattice. The relationship between the
homogeneous and the heterogeneous melting points is also discussed in the light
of the different mechanisms underlying the melting processes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Homogeneous melting takes place whenever the heterogeneous nucleation of the molten phase
at defective lattice sites is suppressed [1–3]. Under such circumstances, the stability of the
crystalline phase is limited by a hierarchy of entropy-, enthalpy-, volume- and rigidity-driven
catastrophes with homogeneous mechanisms [4, 5]. The first limit to the stability of the crystal
lattice is determined by the homogeneous nucleation of melting in the bulk [6].

In contrast to the heterogeneous melting process starting at surfaces and interfaces [2, 3],
homogeneous melting initiates in excited bulk regions in which atomic displacements from
equilibrium lattice positions locally induce the mechanical failure of the crystal [7] and
determines the maximum limit of superheating, unless extremely high heating rates are
applied [8]. It also points out a deep connection between the most venerated melting criteria
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proposed by Lindemann and Born, based respectively on vibration- and phonon-induced crystal
instabilities [5, 9, 10]. Other mechanistic studies focused on the appearance and interaction of
atoms with defective coordination and demonstrated that homogeneous melting at the limit
of superheating is a defect-mediated process [11–16]. The identification of dislocation lines
and loops at relatively high temperatures [11–16] indeed establishes an interesting connection
between numerical findings and theoretical models for a dislocation-mediated transition [2, 17].
In a sense, it also strengthens the hope that the comprehensive theoretical framework for the
melting of two-dimensional systems proposed by Kosterlitz and Thouless [18], Nelson and
Halperin [19] and Young [20] could be extended to three-dimensional systems.

This work gives a further contribution along such a line of inquiry by investigating the
homogeneous melting behaviour of metals with different crystalline structures in order to
ascertain the role of the lattice geometry. The number of atoms with defective coordination as
well as of their aggregates in surface-free bulks of 11 metallic species were estimated by means
of molecular dynamics simulations. A comparison between homogeneous and heterogeneous
melting processes is also carried out. Numerical methods are outlined in the following.

2. Molecular dynamics simulations

Calculations were carried out on metals with face-centred cubic (fcc), hexagonal close-
packed (hcp) and body-centred cubic (bcc) crystalline structures. The fcc elements that were
considered were Ag, Al, Au, Cu and Ni. These five metallic species have been the subject
of recent work [12, 13]. Part of the published data will be reproduced here for the sake of
comparison. Four systems with hcp structure, namely Mg, Ti, Zn and Zr, and two metals, Mo
and V, with a bcc lattice have been also considered. However, it is worth noting that Ti and Zr
undergo a hcp-to-bcc phase transition at high temperatures. Therefore, although starting with an
hcp arrangement, the homogeneous melting process of Ti and Zr involves a bcc structure [21].

2.1. Interatomic potentials

The interatomic potentials for metallic species with initial fcc and hcp structures were described
within the framework of the second-moment approximation of the tight-binding (TB) band
energy [22–24]. The potential parameter values that are characteristic of each chemical species
were taken from the literature [24]. Interactions were computed within a cut-off radius that
roughly corresponds to the distance of the seventh neighbours’ shell. Unfortunately, the TB
potential is not able to stabilize the bcc geometry satisfactorily [24]. In particular, the hcp
and fcc structures are always more stable than the bcc structure. Correspondingly, simulations
employing TB interactions for bcc metals unavoidably result in a gradual transformation from
the bcc lattice to either the hcp or the fcc lattices [24]. For these reasons, in the case of bcc
metals the interactions were reproduced with a Finnis–Sinclair (FS) potential [25]. The FS
approach describes the many-body forces between atoms of bcc elements in terms of a TB
approximation. However, it provides a potential that is mathematically equivalent to the one
obtained with the embedded-atom method (EAM) [26, 27], which is based on a local electronic
density functional theory. An appropriate choice of the characteristic parameters allows for the
FS potential to guarantee adequate stability of the bcc lattice against any phase transformation
into the hcp and fcc lattices [24–26]. As in the previous cases, the FS potential parameter values
for Mo and V were taken from the literature [28, 29]. Also in these cases, interatomic forces
were computed within a cut-off radius that roughly extends to the seventh neighbours.

It is worth noting here that the interactions have been extended to the larger possible
number of coordination shells consistent with the available computational resources. The
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response of the systems to such a cut-off extension has been tested in ad hoc simulations.
These pointed out that thermodynamic properties were not significantly affected, being rather
insensitive to the cut-off radius, provided that a certain threshold value is exceeded [24]. The
mechanical stability of the crystalline lattice was instead improved and the uncertainties on the
elastic constant values were lowered to about the 5%. Taking into account that mechanical
properties play an important role in the homogeneous failure of the crystalline lattice, the
extended cut-off distance permits a more reliable estimate of the homogeneous melting point.

The equations of motion were solved with a fifth-order predictor–corrector algorithm [30]
and a time step δt of 2 fs.

2.2. Homogeneous melting

The first limit of superheating, T K
m , was evaluated by sampling the NPT ensemble with the

number of atoms N , pressure P and temperature T constant [31, 32]. Periodic boundary
conditions (PBCs) were applied in the three Cartesian directions to simulate surface-free
crystalline bulks. In the case of fcc metals [12, 13], computations were carried out on systems
of 6912 atoms arranged in the fcc cF4 crystalline lattice within a cubic simulation box with 12
elementary crystallographic units per side. The crystalline bulks of hcp metals consisted instead
of 6750 atoms defining a lattice with the hP2 geometry and located within a parallelepipedic
box having 15 elementary crystallographic cells per side. The hcp cell is characterized by the
two conventional parameters a and c indicating, respectively, the side length and the height of
the crystallographic unit [33]. The so-called axial ratio c/a is a parameter that is characteristic
of the hcp elements and is essentially determined by the nature and strength of the atomic-scale
interactions [34]. The systems in the present work have been selected in order to have different
axial ratios. In particular, the axial ratio of Zn, amounting to 1.856, is significantly higher than
those pertaining to Mg, Ti and Zr, amounting respectively to 1.623, 1.587 and 1.592 [21, 24].
Calculations on bcc metals were performed on systems of 6750 atoms arranged within a cubic
simulation box having 3375 elementary cells with bcc cI2 geometry per side.

The systems were initially relaxed at a temperature T = 300 K and an external pressure
P ≈ 0 for 1 × 105 time steps. Starting from 300 K, the equilibrated systems were gradually
heated by increasing the temperature by 25 K every 2 × 104 time steps of relaxation. The
long-range crystalline order was monitored by means of the pair correlation function (PCF)
and the static order parameter S(k) [12, 13, 29, 35, 36]. The latter allows for the reliable
identification of the homogeneous melting point. At melting, the S(k) values indeed undergo
a sudden downward jump from about 0.7–0.8, typical of a thermally disordered crystalline
phase, to 0.1–0.2, characteristic instead of an isotropic liquid [30, 35, 36]. The reciprocal space
vector k was given suitable component values to monitor the crystalline order along the [111]
crystallographic directions.

2.3. Crystalline order

The number and nature of structural defects were evaluated by looking at the atoms,
hereafter referred to as defectively coordinated, with a coordination number different from
the equilibrium one. For the fcc, hcp and bcc systems, the number of nearest neighbours at
equilibrium amounts to 12, 12 and 8, respectively. The number of nearest neighbours was
estimated by applying a distance criterion according to which two atoms are nearest neighbours
whenever their distance is shorter than the distance, rmin, corresponding to the first minimum
of PCF [11–14, 37]. This means that the extension of the coordination shell of a given atom
is defined by the first peak of the PDF. Given that the systems are solid, the PCF peaks related
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to the first and the second nearest-neighbours’ shells can be distinguished well. As usual, the
boundary between the two shells is identified with the distance rmin at which the PCF has its
first minimum. Any given atom then has its nearest neighbours within a distance rmin and the
total number of neighbours can be evaluated easily.

The same distance criterion also permits us to evaluate the degree of clustering of
defectively coordinated atoms, i.e. the tendency to form aggregates. Two defectively
coordinated atoms are thus regarded as belonging to the same cluster whenever their distance
is shorter than rmin [11–14]. This allows for estimation of the number, Ncl, and the size, n, of
the clusters.

It is worth noting here that the evaluation of the number, size and configurations of
clusters is a necessary condition to investigate the role of lattice defects in the mechanism of
homogeneous melting. The fact that a certain atom could be defectively coordinated indeed
does not imply that such an atom necessarily corresponds or is part of either a point or a
linear lattice defect. Actually, lattice defects can be identified only indirectly by means of
defectively coordinated atoms. In particular, a lattice defect has to be characterized in terms
of the configuration of defectively coordinated atoms. An example is provided by the case
of a vacancy in a perfect fcc crystalline lattice. The atoms here are normally surrounded by
12 nearest neighbours. The vacant site is therefore also surrounded by 12 nearest neighbours.
However, each atom neighbouring the vacancy possesses only 11 nearest neighbours due to the
presence of the vacant site in its coordination shell. A vacancy is therefore associated with the
configuration of 12 neighbouring atoms with 11 nearest neighbours each. Analogous reasoning
can be followed for interstitials, identified by configurations of 12 neighbouring atoms with
13 nearest neighbours each. The situation for dislocations is instead different, given that their
geometrical properties are strictly connected with the lattice topology, and their identification
requires an estimation of Burgers’ circuits.

Analysis of the local crystalline order was carried out by means of the so-called Honeycutt–
Andersen (HA) parameters, which permit us to identify the local structural arrangement on the
basis of the distances between atomic pairs in coordination shells [37].

The fraction αd(T ) of defectively coordinated atoms, defined as the ratio between the
number of defectively coordinated atoms and the total number of atoms in the system, and
the total number Ncl of clusters were used to compare properly the behaviour of systems of
different nature and size.

2.4. Heterogeneous melting point

The methodology employed to simulate heterogeneous melting is based on previous
work [35, 36, 38, 39], and full details can be found elsewhere [40]. The heterogeneous melting
process was not studied systematically for all the metallic species previously considered.
Computations were carried out for the fcc systems, for hcp Zn, and for bcc Mo. Calculations
were performed on systems consisting of a stacking of 48 (110) atomic planes along the z
Cartesian direction terminating with a free surface, with each plane containing 144 atoms.
PBCs were applied only along the x and y Cartesian directions. A reservoir region of five
atomic planes was defined at the bottom of the simulation cell. Reservoir atoms were given
fixed positions corresponding to a perfect fcc, hcp or bcc lattice. The top of the simulation
cell consisted of an empty space, with a height corresponding to about ten atomic planes and
bounded by a reflective barrier, which permits surface atoms to eventually sample the vapour
phase.

The system described above was prepared by starting from a larger configuration of 58
fully equilibrated (110) atomic planes with PBCs applied along the x and y Cartesian directions
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Figure 1. The static order parameter S(k) as a function of the temperature T . A sudden drop in S(k)

values is observed at 2575 K, which marks the limit of superheating T K
m at which the homogeneous

melting occurs. Data refer to bcc V. Analogous trends are displayed by the other metallic species.

and two reservoir regions of five atomic planes along the z Cartesian direction, respectively at
the top and at the bottom of the simulation cell. The relaxed free surface was generated by
gradually canceling the pair interactions between the atoms belonging to the 48 (110) planes
selected starting from the bottom and the remaining ones. Such a cancellation was performed
by reducing the potential parameters A and ξ to zero in 1000 time steps. The resulting semi-
crystal terminating with a free surface was further relaxed for 1×105 time steps at a temperature
of 300 K and an external pressure P ≈ 0 [40].

The degree of structural order and the collapse of the crystalline structure at the equilibrium
melting point Tm were monitored plane-by-plane by means of the planar static order parameter
Sp(k), which is the two-dimensional analogue of S(k) [30].

3. Numerical findings

The thermal response of the crystalline lattice to the gradual temperature rise is the same
for all the chemical systems investigated. The amplitude of atomic vibrations around
equilibrium lattice positions increases with temperature, determining an increasing disorder
for the crystalline structure. The displacement of atoms from their equilibrium sites is readily
pointed out by the static order parameter S(k), which correspondingly undergoes a gradual
decrease.

As shown in figure 1 for the case of V, the decrease in S(k) values is approximately linear
within a broad temperature range. Subsequently, the trend becomes markedly curved, and
finally the gradual change is replaced by a sudden drop, pointing out a loss of structural order.
The failure of the crystalline lattice takes place uniformly in the system [7, 11–14, 35, 36],
and the temperature at which the static order parameter S(k) drops to values close to zero
corresponds to the homogeneous melting point T K

m . The T K
m values obtained for the 11 metallic

species considered are reported in table 1.
The value of the homogeneous melting point T K

m is sensitive to the size of the simulated
system. Size effects have been investigated on Al and Cu fcc systems consisting of 864, 2048,
4000, 6912 and 10 976 atoms, respectively, as well as on Mo bcc systems containing 1024,
3456, 6750 and 11 664 atoms. The results obtained in the case of Al are shown for the sake
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Figure 2. The limit of superheating, T K
m , as a function of the number N of atoms in the system. It

can be seen that size effects significantly affect the smallest systems. Data refer to fcc Al. Analogous
trends are displayed for fcc Cu and bcc Mo, and are expected for the other metallic species.

Table 1. Numerical estimates of the equilibrium melting point Tm and of the limit of superheating
T K

m .

Element T K
m (K) Tm (K)

Ag 1250 1000
Al 925 775
Au 1400 1150
Cu 1650 1275
Mg 1050 910c

Mo 3375 2850
Ni 2025 1700
Ti 2275 1750a

V 2575 2220b

Zn 850 700
Zr 2375 1875a

a Values taken from [12].
b Value taken from [29].
c Value obtained from interpolation.

of illustration in figure 2, where the T K
m values are quoted as a function of the total number

N of atoms in the system. The numerical findings indicate that the system size significantly
affects the behaviour of the smallest systems, i.e. those containing 864 and 2048 atoms in the
case of fcc metals and that with 1024 atoms in the case of Mo. Similar T K

m values are instead
obtained in the remaining cases. The results obtained for Al and Cu indicate that the values of
the observables that are taken into account change on average by only 3% when the number of
atoms changes from 4000 to 10 976. Analogously, the values obtained for Mo change by 3%
when the number of atoms changes from 3456 to 11 664. These results point out a satisfactory
robustness of the simulated systems against size effects. Accordingly, the results arising from
the systematic investigations carried out on fcc, hcp and bcc systems of 6912, 6750 and 6750
atoms, respectively, can be considered to be meaningful.

The thermal behaviour of systems terminating with a free surface is analogous to the
behaviour described above. The values of the planar static order parameter Sp(k) undergo a
gradual decrease as the temperature increases for all the atomic planes, except for those in the
reservoir region that contains immobile species. The gradual decrease is followed at a certain
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Figure 3. The homogeneous melting point T K
m as a function of the equilibrium melting point Tm.

A linear trend is observed. The best-fitted line is also shown. The horizontal dotted lines mark the
T K

m value of the hcp Mg and the vertical dotted line identifies the corresponding Tm estimate.

temperature by a sudden downward jump to values that are characteristic of the liquid phase.
Although dependent on the topology of the free surface, its value changing as the Miller indices
change, such a temperature represents a satisfactory estimate of the equilibrium melting point,
Tm [35, 36, 38, 40]. In all the cases, melting starts at the free surface and then propagates to the
bulk [40]. The Tm values obtained for the fcc metals as well as those for hcp Zn and bcc Mo
are also reported in table 1.

Estimates of the melting points Tm of Ti and Zr metals, obtained using a TB semi-empirical
potential but a different methodology, also exist [12] and have been reported in the table.
Finally, the estimate of the Tm value for the bcc V, also quoted in table 1, was taken from the
literature [29]. It appears then that the unique element for which an estimate of the equilibrium
melting point Tm is not available is hcp Mg. However, such an estimate can likewise be
obtained even without additional simulations by taking into account the relationship between
the homogeneous melting point T K

m and the heterogeneous melting point Tm. It is indeed worth
noting that the T K

m values arrange according to an approximately linear trend when quoted as
a function of the corresponding Tm values, as in figure 3. It is also worth noting that the linear
trend involves all the melting points, irrespective of the structure of the elemental species for
which they are characteristic. This means that a deep connection exists between homogeneous
and heterogeneous melting, in accordance with theoretical predictions [6].

The mechanism of homogeneous melting has been characterized in detail for all the
metallic species by quantifying the numbers of defective atoms and of their clusters. For the
sake of clarity, the cases of fcc, hcp and bcc metals will be discussed separately.

3.1. Elements with fcc structure

The fraction αd(T ) of defectively coordinated atoms for the fcc metals is shown in figure 4(a)
as a function of temperature T . The species display analogous trends, monotonically increasing
with temperature. The increase is linear in the first portion of the plot, but becomes markedly
curved as the limit of superheating, T K

m , is approached. The different curves in figure 4(a)
superpose when plotted as a function of the reduced temperature T/T K

m . This indicates that
the homogeneous melting point T K

m is a scaling factor for the fraction αd(T ) of defectively
coordinated atoms. The superposed plots in figure 4(b) also point out the similarity of the
αd(T K

m ) values at the homogeneous melting point T K
m , amounting to about 0.4 in all the cases.
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Figure 4. The fraction αd (T ) of defectively coordinated atoms as a function of (a) the temperature
T and (b) the reduced temperature T/T K

m . The curves in (b) superpose, indicating that T K
m is a

scaling factor for αd (T ). In all cases, the αd (T K
m ) value at the homogeneous melting point T K

m
amounts to about 0.4.

Figure 5. A small cluster of 16 defectively coordinated atoms of Au at 1200 K.

At relatively low temperatures, the rearrangement of coordination shells determines the
formation of isolated defectively coordinated atom pairs. However, the degree of cooperation of
such processes increases with temperature, inducing the formation of aggregates of defectively
coordinated atoms such as those shown in figure 5.

The number Ncl of defectively coordinated atom clusters for the different chemical species
is quoted in figure 6 as a function of the reduced temperature T/T K

m . The data superposition
indicates that T K

m represents a scaling factor for the processes underlying the appearance and
interaction of defectively coordinated atoms. Figure 6 shows, in addition, that the number
Ncl of clusters has a strong dependence on the temperature. It can be seen that Ncl first
undergoes a smooth increase, then attains a maximum value at about 0.8 T K

m and finally
decreases. The observed non-monotonic trend can be explained by the competition between
ramification, fragmentation and coalescence events affecting the number, the size and the shape
of clusters [11–14]. Ramification and fragmentation processes are related to the number of
defectively coordinated atoms and initially predominate, determining an increase in the number
of clusters due to the increase in the content of defectively coordinated atoms. However,
ramification events also determine the increase in the cluster size n, i.e. of the number of
defectively coordinated atoms connected in a given cluster. Given that the space occupied by a
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Figure 6. The number Ncl of clusters of defectively coordinated atoms as a function of the reduced
temperature T/T K

m . A maximum at about 0.8 T K
m is observed.

cluster is roughly proportional to its size, the increase in the cluster size gradually favours the
occurrence of coalescence events between the defectively coordinated atom aggregates. This
finally results in a significant decrease in the total number Ncl of clusters [11–14].

Small clusters consisting of about 10 atoms display approximately linear configurations,
forming string-like structures [11–14]. These clusters, which are relatively abundant at
low temperatures, have been regarded as pseudo-dislocations or, alternatively, as dislocation
cores [15, 16]. However, it must be pointed out that such small clusters only rarely
display properties characteristic of dislocations. As the average size of clusters increases,
the probability that a given cluster possesses the characteristic of dislocation loops and
lines increases [12, 13]. Shockley partial dislocations with a (111) glide plane moving
irregularly in the [110] and one of the [211] crystallographic directions have been observed
at relatively high temperatures. Open dislocation lines with a (111) glide plane crossing the
whole system have occasionally been detected in the temperature range close to the limit of
superheating. Similarly, smaller configurations of 12 neighbouring atoms with either 11- or
13-fold coordination revealed the formation of vacancies and interstitials, respectively [12, 13].
Of course, the number of lattice defects is considerably smaller than the number of defectively
coordinated atoms, and the fraction of interstitials and vacancies in fcc, hcp and bcc lattices has
a value of about 10−5–10−4. These results are then satisfactorily close to the experimental
results. Analysis of the local crystalline order with the HA parameters indicates that the
dislocations, as well as the other defectively coordinated atom aggregates, are related to the
formation of stacking faults consisting of crystalline domains of about 30–40 atoms with an
hcp arrangement.

3.2. Elements with hcp structure

The melting behaviour of the Mg and Zn hcp systems is expected to be relatively similar to the
behaviour displayed by fcc elements, due to the fact that both the hcp and fcc structures are
close-packed, their differences originating from the different alternate stacking of (111) planes.
The fractions αd(T ) of defectively coordinated atoms for Mg and Zn are reported in figure 7(a)
as a function of the reduced temperature T/T K

m . The two curves, displaying a monotonic
increase, are superposed. It can be seen that the αd(T K

m ) values amount again to about 0.4. The
critical fraction αd(T K

m ) of defectively coordinated atoms at the limit of superheating T K
m then

takes approximately the same value for fcc and hcp elements, thus suggesting that these species
have an analogous mechanism of homogeneous melting.

The defectively coordinated atoms appear and interact in the surface-free bulk of hcp
species with the same dynamics shown in the case of fcc elements. Defectively coordinated
atom pairs isolated at relatively low temperatures become connected as the temperature
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Figure 7. The fraction αd(T ) of defectively coordinated atoms (a) and the number Ncl of clusters
of defectively coordinated atoms (b) as a function of the reduced temperature T/T K

m . The curves
are analogous to those for fcc metals.

increases, as a consequence of the rearrangement of coordination shells. The defectively
coordinated atoms form clusters similar to that depicted in figure 3. The number, Ncl, of such
clusters is shown in figure 7(b) as a function of the reduced temperature T/T K

m . The superposed
curves display a non-monotonic trend, analogous to the one displayed by fcc elements in
figure 6. However, it appears that the Ncl values of Zn are slightly higher than those for Mg.

The clusters of defectively coordinated atoms formed in the hcp lattices have apparently
the same shape and configuration as those observed in the fcc lattices. Again, the small string-
like clusters detected at relatively low temperatures interact with each other and are gradually
replaced by larger ones as the temperature rises. The dislocation lines and loops occasionally
observed at temperatures close to T K

m mostly have a (001) glide plane and move in the [100]
crystallographic direction. Vacancy–interstitial complexes, as well as isolated vacancies and
interstitials, have also been observed. The HA parameters point out the formation of stacking
faults and the consequent appearance of crystalline regions of about 20–30 atoms having either
fcc or bcc local order.

3.3. Elements undergoing the hcp-to-bcc phase transition

The allotropic phase of Ti and Zr stable at relatively low temperatures is the hcp phase [21].
However, both Ti and Zr undergo a hcp-to-bcc phase transition, observed experimentally at
about 1100 K [21]. The atomic-scale mechanism governing such a structural transition has
been studied in detail in the past for Zr [41] and will not be dealt with here in order to keep the
focus on the role of defectively coordinated atoms in the homogeneous melting processes.

The fraction αd(T ) of defectively coordinated atoms for Ti and Zr is shown in figure 8(a)
as a function of the reduced temperature T/T K

m . The superposition between the increasing
monotonic curves of the two elements is almost perfect. The content of defectively coordinated
atoms increases according to a roughly linear trend up to a temperature of about 1800 K. At such
a temperature, the superposed curves display a discontinuity consisting of a sudden increase.
More specifically, the increase takes place at 1800 K for Ti and at 1850 K for Zr. The HA
parameters reveal that, at temperatures close to but lower than those mentioned above, the
fractions αTi,bcc and αZr,bcc of Ti and Zr atoms with a bcc crystalline environment are on the
order of 0.1. At 1800 K for Ti and at 1850 K for Zr, the HA analysis indicates that the local
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Figure 8. The fraction αd(T ) of defectively coordinated atoms (a) and the number Ncl of clusters
of defectively coordinated atoms (b) as a function of the reduced temperature T/T K

m . The curves
are characterized by a discontinuity at about 0.8 T K

m , which identifies the hcp-to-bcc transition
temperature Tt. At such a temperature, αd (T ) and Ncl undergo a sudden increase and decrease,
respectively.

crystalline order changes drastically. The fractions αTi,bcc and αZr,bcc of Ti and Zr atoms with
a bcc crystalline environment are indeed found to amount to about 0.85. The discontinuities
in the values of the fraction αd(T ) of defectively coordinated atoms then mark the occurrence
of the hcp-to-bcc phase transition, and the temperatures mentioned above correspond to the
transition temperature Tt.

The phase transformation mechanism, which is expected to be the same for the two metals,
involves anisotropic contraction and extension processes of atomic planes of the hcp lattice
along given crystallographic directions [41]. Mechanistic features will not be discussed here
in detail, for the sake of brevity and clarity. However, it is worth noting that the transition
temperatures observed for Ti and Zr, although considerably higher than the experimental
values [21], are in substantial agreement with the transition temperature observed in previous
simulation work with the TB force scheme [41]. The slightly lower transition temperatures
obtained in the present work are related to a different choice of potential parameters, as well as
to different simulations conditions [21, 41].

As is evident from figure 8(a), at temperatures higher than Tt, the fraction αd(T ) of
defectively coordinated atoms again undergoes a smooth increase. It is worth remembering here
that the crystalline structures of Ti and Zr now have a bcc geometry, so that the homogeneous
melting process concerns a structural arrangement that is not close-packed. This aspect
probably makes less surprising the observation that the αd(T K

m ) values at the homogeneous
melting point T K

m for Ti and Zr are significantly different from those observed in the cases of
the elements melting with fcc and hcp structures. In particular, Ti and Zr display αd(T K

m ) values
on the order of 0.5, whereas, in all the other cases discussed hitherto, the fraction αd(T K

m ) of
defective atoms was equal to about 0.4.

The transition from the hcp to the bcc structure also affects the total number Ncl of
defectively coordinated atom clusters. The data in figure 8(b), where Ncl is quoted as a function
of the reduced temperature T/T K

m , show that the trend is initially similar to those for fcc and
hcp elements. However, discontinuities in the number Ncl of clusters are evident at Tt for Ti
and Zr. In this case, the discontinuities are marked by a sudden decrease in the number Ncl

of clusters. This is a consequence of the definite increase undergone by the fraction αd(T )
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Figure 9. The fraction αd(T ) of defectively coordinated atoms (a) and the number Ncl of clusters
of defectively coordinated atoms (b) as a function of the reduced temperature T/T K

m . The fraction
αd (T K

m ) of defectively coordinated atoms at melting amounts to about 0.5.

of defectively coordinated atoms. Such an increase indeed favours the coalescence between
different clusters and thus a net decrease in Ncl.

The defectively coordinated atoms form aggregates of various shape and size, similar
to those observed in the case of fcc and hcp metals. The clusters occasionally display the
configurations that are typical of dislocations and point defects. It is worth noting that the
dislocations that are detected undergo displacements roughly in agreement with the slip systems
of the bcc lattice. In particular, dislocations with (110) and (211) glide planes are seen to move
approximately along the [111] crystallographic direction.

3.4. Elements with bcc structure

On the basis of the findings presented above, elements with the bcc structure are expected to
display a melting behaviour that is significantly different from those of the fcc and hcp systems.
The origins of such differences can reasonably be ascribed to the fact that, contrary to both the
hcp and fcc structures, the bcc lattice is not close-packed.

The fraction αd(T ) of defectively coordinated atoms for the two bcc metallic species
is shown in figure 9(a) as a function of the reduced temperature T/T K

m . The data of Mo
and V arrange according to superposed monotonic trends pointing out αd(T K

m ) values at the
homogeneous melting point T K

m of about 0.5. This value is the same as those observed in the
cases of the Ti and Zr systems melting with the bcc structure.

The number Ncl of defectively coordinated atom clusters is reported in figure 9(b) as a
function of the reduced temperature T/T K

m . The curves of Mo and V are again superposed.
The HA analysis of the local crystalline order points out the formation of domains of about

20 atoms with hcp arrangement. Finally, the observed dislocations move on (110) and (211)
glide planes approximately along the [111] crystallographic direction.

4. Discussion

The numerical findings concerning both the fraction αd(T ) of defectively coordinated atoms
and the number Ncl of the clusters that they form are summarized in figures 10(a) and (b),
where the data of the different systems are quoted as a function of the reduced temperature
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Figure 10. The fraction αd (T ) of defectively coordinated atoms (a) and the normalized number
Ncl,norm of clusters of defectively coordinated atoms (b) as a function of the reduced temperature
T/T K

m for the 11 metals investigated. The compact fcc and hcp structures display αd(T ) and
Ncl,norm values that are larger and smaller, respectively, than those pertaining to bcc elements.

T/T K
m . Due to the hcp-to-bcc phase transition undergone by Ti and Zr, part of their data is

reported as hcp and part as bcc.
It can be seen from figure 10(a) that the curves of the elements with compact structures

group together, as well as those of the elements melting with a bcc structure. It also appears
that the limit of superheating, T K

m , represents a scaling factor for all the elements investigated.
The elements that melt with either fcc or hcp lattices display αd(T K

m ) values on the order of
0.4, whereas the species that melt with a bcc structure display αd(T K

m ) values of about 0.5.
This evidence suggests that the fraction αd(T K

m ) of defectively coordinated atoms at the limit of
superheating, T K

m , is a quantity that is characteristic of the geometry of the crystalline lattice.
The larger fraction αd(T ) of defectively coordinated atoms observed in bcc systems is

at the origin of the smaller number Ncl of clusters that they contain. The number of clusters
normalized to the total number of atoms in the system, Ncl,norm, is quoted in figure 10(b) as a
function of the reduced temperature T/T K

m . As in the previous case, the data of the elements
group together in dependence of the crystalline lattice with which the element melts. The
cumulative curve of the bcc elements is always lower than those pertaining to the compact
structures.

These findings suggest that the geometry of the crystalline lattice undergoing a gradual
temperature rise has a fundamental role in the mechanism determining the final collapse
at the limit of superheating. Such behaviour is not surprising in the light of the existing
experimental, theoretical and numerical studies [3, 42]. For example, it is a well-known
fact that heterogeneous melting and correlated pre-melting phenomena are strongly sensitive
to the surface structure [2, 3, 36, 38, 39, 42, 43]. Surfaces with different Miller indexes
display different pre-melting and heterogeneous melting points [2, 3, 42, 43]. Despite the
evident and expected dependence on the structure, universal behaviours can however be
identified [2, 6, 17, 40]. Even though the conceptual framework has not been understood
yet, such behaviours can be ascribed to the interplay between structure and dynamics. Both
experimental and numerical evidence, for example, concur to point out a deep connection
between the volume available to atomic species, relative mobility, mechanical properties and
melting point [2, 3, 42]. In a sense, the numerical findings discussed in the present work agree
with such evidence, given that the largest fraction of defectively coordinated atoms is observed
not in the close-packed lattices but in the more open bcc structures. However, a definite
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relationship between structure and melting behaviour has not been found yet and a systematic
experimental and numerical investigation of the heterogeneous and homogeneous melting
processes is necessary to advance the basic knowledge in the field further. The accomplishment
of such a task is also necessary in the light of the deep differences between heterogeneous and
homogeneous solid–liquid transitions [2, 3, 7, 8, 40]. In the former case, the failure of the
crystalline phase is due to the large mobility of surface species and this, in turn, is connected
with the topology of the crystalline plane that is exposed [42]. Surface reconstructions further
complicate the problem [42]. The heterogeneous melting process gradually involves the bulk
starting from surfaces and interfaces, whereas homogeneous melting immediately involves
the whole bulk. However, careful study of the heterogeneous melting features is expected
to throw light on the mechanism of homogeneous melting [8], which however does not change
substantially with the crystalline lattice geometry. In all the cases, it is intimately related to the
proliferation of defects in the bulk.

The proliferation of atoms with defective coordination in the bulk determines a significant
increase in the atomic mobility, particularly in the superheating regime. According to the
observations mentioned above, this can be considered as the fundamental reason for the lattice
failure. The atoms with defective coordination indeed leave the equilibrium lattice positions and
compromise the mechanical stability of the crystalline lattice. Atomic displacements take place
according to a cooperative mechanism, the features of which recall previous studies [44, 45].
The atoms indeed move along string-like paths that can be regarded as alternative routes to
thermally activated interdiffusion [46]. However, further investigations along this line are
necessary to characterize fully the nature of the clusters of defectively coordinated atoms
assisting the atomic displacements and determine the role of interstitials, as predicted in
previous work [44].

5. Conclusions

The systematic study of the thermal response to a gradual temperature rise of crystalline lattices
with different geometry has shown that homogeneous melting at the limit of superheating is
governed by the formation of atoms with defective coordination. The calculations performed
indicate that the amount of defectively coordinated atoms at the failure of the crystalline
structure is intrinsically dependent on its geometry. The fraction of defectively coordinated
atoms is then characteristic of the lattice geometry. This evidence establishes a definite
connection between lattice topology and the melting mechanism. Further work is necessary
in order to throw light on the reasons underlying the different characteristic values of the
fraction of defectively coordinated atoms, as well as on the actual role of lattice defects. A
careful characterization of heterogeneous melting mechanisms is also necessary to gain deeper
insight into the role of the lattice topology in both heterogeneous and homogeneous solid–liquid
transition processes.
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